Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37370789

RESUMEN

Breast cancer alone accounts for the majority of cancer deaths among women, with the most commonly diagnosed subtype being estrogen receptor positive (ER+). Survival has greatly improved for patients with ER+ breast cancer, due in part to the development of antiestrogen compounds, such as tamoxifen. While treatment of the primary disease is often successful, as many as 30% of patients will experience recurrence and metastasis, mainly due to developed endocrine therapy resistance. In this study, we discovered two tamoxifen combination therapies, with simeprevir and VX-680, that reduce the tumor burden in animal models of ER+ breast cancer more than either compound or tamoxifen alone. Additionally, these tamoxifen combinations reduced the expression of HER2, a hallmark of tamoxifen treatment, which can facilitate acquisition of a treatment-resistant phenotype. These combinations could provide clinical benefit by potentiating tamoxifen treatment in ER+ breast cancer.

2.
Cancers (Basel) ; 15(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36900375

RESUMEN

Basal-like triple-negative breast cancer (TNBC) tumor cells are difficult to eliminate due to resistance mechanisms that promote survival. While this breast cancer subtype has low PIK3CA mutation rates when compared to estrogen receptor-positive (ER+) breast cancers, most basal-like TNBCs have an overactive PI3K pathway due to gene amplification or high gene expression. BYL-719 is a PIK3CA inhibitor that has been found to have low drug-drug interactions, which increases the likelihood that it could be useful for combinatorial therapy. Alpelisib (BYL-719) with fulvestrant was recently approved for treating ER+ breast cancer patients whose cancer had developed resistance to ER-targeting therapy. In these studies, a set of basal-like patient-derived xenograft (PDX) models was transcriptionally defined with bulk and single-cell RNA-sequencing and clinically actionable mutation profiles defined with Oncomine mutational profiling. This information was overlaid onto therapeutic drug screening results. BYL-719-based, synergistic two-drug combinations were identified with 20 different compounds, including everolimus, afatinib, and dronedarone, which were also found to be effective at minimizing tumor growth. These data support the use of these drug combinations towards cancers with activating PIK3CA mutations/gene amplifications or PTEN deficient/PI3K overactive pathways.

3.
Sci Rep ; 12(1): 21248, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482068

RESUMEN

The goals of this study were to identify transcriptomic changes that arise in basal-like breast cancer cells during the development of resistance to epidermal growth factor receptor inhibitors (EGFRi) and to identify drugs that are cytotoxic once EGFRi resistance occurs. Human patient-derived xenografts (PDXs) were grown in immunodeficient mice and treated with a set of EGFRi; the EGFRi erlotinib was selected for more expansive in vivo studies. Single-cell RNA sequencing was performed on mammary tumors from the basal-like PDX WHIM2 that was treated with vehicle or erlotinib for 9 weeks. The PDX was then subjected to long-term erlotinib treatment in vivo. Through serial passaging, an erlotinib-resistant subline of WHIM2 was generated. Bulk RNA-sequencing was performed on parental and erlotinib-resistant tumors. In vitro high-throughput drug screening with > 500 clinically used compounds was performed on parental and erlotinib-resistant cells. Previously published bulk gene expression microarray data from MMTV-Wnt1 tumors were contrasted with the WHIM2 PDX data. Erlotinib effectively inhibited WHIM2 tumor growth for approximately 4 weeks. Compared to untreated cells, single-cell RNA sequencing revealed that a greater proportion of erlotinib-treated cells were in the G1 phase of the cell cycle. Comparison of WHIM2 and MMTV-Wnt1 gene expression data revealed a set of 38 overlapping genes that were differentially expressed in the erlotinib-resistant WHIM2 and MMTV-Wnt1 tumors. Comparison of all three data types revealed five genes that were upregulated across all erlotinib-resistant samples: IL19, KLK7, LCN2, SAA1, and SAA2. Of these five genes, LCN2 was most abundantly expressed in triple-negative breast cancers, and its knockdown restored erlotinib sensitivity in vitro. Despite transcriptomic differences, parental and erlotinib-resistant WHIM2 displayed similar responses to the majority of drugs assessed for cytotoxicity in vitro. This study identified transcriptomic changes arising in erlotinib-resistant basal-like breast cancer. These data could be used to identify a biomarker or develop a gene signature predictive of patient response to EGFRi. Future studies should explore the predictive capacity of these gene signatures as well as how LCN2 contributes to the development of EGFRi resistance.


Asunto(s)
Neoplasias de la Mama , Receptores ErbB , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/tratamiento farmacológico , Receptores ErbB/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento , Resistencia a Antineoplásicos
4.
Gigascience ; 10(4)2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33880552

RESUMEN

BACKGROUND: Sequencing of patient-derived xenograft (PDX) mouse models allows investigation of the molecular mechanisms of human tumor samples engrafted in a mouse host. Thus, both human and mouse genetic material is sequenced. Several methods have been developed to remove mouse sequencing reads from RNA-seq or exome sequencing PDX data and improve the downstream signal. However, for more recent chromatin conformation capture technologies (Hi-C), the effect of mouse reads remains undefined. RESULTS: We evaluated the effect of mouse read removal on the quality of Hi-C data using in silico created PDX Hi-C data with 10% and 30% mouse reads. Additionally, we generated 2 experimental PDX Hi-C datasets using different library preparation strategies. We evaluated 3 alignment strategies (Direct, Xenome, Combined) and 3 pipelines (Juicer, HiC-Pro, HiCExplorer) on Hi-C data quality. CONCLUSIONS: Removal of mouse reads had little-to-no effect on data quality as compared with the results obtained with the Direct alignment strategy. Juicer extracted more valid chromatin interactions for Hi-C matrices, regardless of the mouse read removal strategy. However, the pipeline effect was minimal, while the library preparation strategy had the largest effect on all quality metrics. Together, our study presents comprehensive guidelines on PDX Hi-C data processing.


Asunto(s)
Cromatina , Genómica , Animales , Cromatina/genética , Cromosomas , Xenoinjertos , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones
5.
Clin Exp Metastasis ; 37(2): 241-246, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31938954

RESUMEN

The expression of cellular reporters to label cancer cells, such as green fluorescent protein (GFP) and luciferase, can stimulate immune responses and effect tumor growth. Recently, a mouse model that expresses GFP and luciferase in the anterior pituitary gland was generated to tolerize mice to these proteins; the "Glowing Head" mouse. Mice were obtained from a commercial vendor, bred, and then used for tumor growth and metastasis studies. The transgene expression of luciferase was assessed within tumor-naïve mice as well as mice with mammary tumors or metastases. Tumor-free mice with white fur, compared to black fur, allowed for stronger luciferase transgene expression to be observed in the pituitary, sternum, and femur. Growth of four different luciferase-expressing mouse cancer cell lines readily occurred in the mammary gland. Though sternum expression of the luciferase transgene occurred in cancer-free mice, growth or death of luciferase positive cancer cells in the lung could be observed. Liver metastases seeded by portal vein injections of luciferase positive cancer cell lines were completely distinct from luciferase transgene expression. Though lung and brain metastasis studies have limitations, the Glowing Head mouse can be useful to inhibit immune system rejection of luciferase or GFP expressing cancer cells. This mouse model is most beneficial for studies of mammary tumors and liver metastases.


Asunto(s)
Genes Reporteros/genética , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Mamarias Experimentales/patología , Adenohipófisis/metabolismo , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/secundario , Línea Celular Tumoral/trasplante , Femenino , Fluorescencia , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hígado/diagnóstico por imagen , Hígado/patología , Neoplasias Hepáticas/secundario , Luciferasas/química , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes , Pulmón/diagnóstico por imagen , Pulmón/patología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/secundario , Glándulas Mamarias Animales/diagnóstico por imagen , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Ratones , Ratones Transgénicos , Tomografía Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...